A Defective Meiotic Outcome of a Failure in Homologous Pairing and Synapsis Is Masked by Meiotic Quality Control
نویسندگان
چکیده
Successful gamete production is ensured by meiotic quality control, a process in which germ cells that fail in bivalent chromosome formation are eliminated during meiotic prophase. To date, numerous meiotic mutants have been isolated in a variety of model organisms, using defects associated with a failure in bivalent formation as hallmarks of the mutant. Presumably, the meiotic quality control mechanism in those mutants is overwhelmed. In these mutants, all germ cells fail in bivalent formation, and a subset of cells seem to survive the elimination process and develop into gametes. It is possible that mutants that are partially defective in bivalent formation were missed in past genetic screens, because no evident meiotic defects associated with failure in bivalent formation would have been detectable. Meiotic quality control effectively eliminates most failed germ cells, leaving predominately successful ones. Here, we provide evidence supporting this possibility. The Caenorhabditis elegans mrg-1 loss-of-function mutant does not appear to be defective in bivalent formation in diakinesis oocytes. However, defects in homologous chromosome pairing and synapsis during the preceding meiotic prophase, prerequisites for successful bivalent formation, were observed in most, but not all, germ cells. Failed bivalent formation in the oocytes became evident once meiotic quality control was abrogated in the mrg-1 mutant. Both double-strand break repair and synapsis checkpoints are partly responsible for eliminating failed germ cells in the mrg-1 mutant. Interestingly, removal of both checkpoint activities from the mrg-1 mutant is not sufficient to completely suppress the increased germline apoptosis, suggesting the presence of a novel meiotic checkpoint mechanism.
منابع مشابه
A Quality Control Mechanism Coordinates Meiotic Prophase Events to Promote Crossover Assurance
Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of f...
متن کاملEvidence That Masking of Synapsis Imperfections Counterbalances Quality Control to Promote Efficient Meiosis
Reduction in ploidy to generate haploid gametes during sexual reproduction is accomplished by the specialized cell division program of meiosis. Pairing between homologous chromosomes and assembly of the synaptonemal complex at their interface (synapsis) represent intermediate steps in the meiotic program that are essential to form crossover recombination-based linkages between homologs, which i...
متن کاملA Dominant, Recombination-Defective Allele of Dmc1 Causing Male-Specific Sterility
DMC1 is a meiosis-specific homolog of bacterial RecA and eukaryotic RAD51 that can catalyze homologous DNA strand invasion and D-loop formation in vitro. DMC1-deficient mice and yeast are sterile due to defective meiotic recombination and chromosome synapsis. The authors identified a male dominant sterile allele of Dmc1, Dmc1(Mei11), encoding a missense mutation in the L2 DNA binding domain tha...
متن کاملCoordination of meiotic recombination, pairing, and synapsis by PHS1.
Pairing, synapsis, and recombination are prerequisites for accurate chromosome segregation in meiosis. The phs1 gene in maize is required for pairing to occur between homologous chromosomes. In the phs1 mutant, homologous chromosome synapsis is completely replaced by synapsis between nonhomologous partners. The phs1 gene is also required for installation of the meiotic recombination machinery o...
متن کاملP-198: Analysis of Expression Level of TEX12 Gene in Testis Tissues of Severe Oligozoospermic and Non-Obstructive Azoospermic Men
Background: During the first meiotic prophase, alignment and synapsis of the homologous chromosomes are mediated by the synaptonemal complex. Incorrect assembly of the synaptonemal complex leads to impaired recombination and cell death, which in humans, causes infertility in males. Testis-expressed gene 12 (TEX12) is a germ cell-specific gene that is located on the chromosome 11 (11q22) in huma...
متن کامل